Example

Find an \(n \)th degree polynomial with real coefficients satisfying the given conditions.
\[n = 3; \quad 1 \text{ and } i \text{ are zeros; } \quad f(2) = 10 \]

ANSWER:

Since \(n = 3 \), then the polynomial has degree 3, which means it has 3 zeros, counting multiplicity. Since \(x = i \) is a zero, then \(x = -i \) must also be a zero, and this gives us all three zeros.

The Factor Theorem tells us that since \(x = i, \ x = -i \) and \(x = 1 \) are zeros of \(f(x) \), then \((x - i), (x + i), \) and \((x - 1) \) are factors of \(f(x) \).

Also, \(f(x) \) has a leading coefficient which we will need to determine later. For now we will call it \(a_n \). Then we have

\[
f(x) = a_n(x - i)(x + i)(x - 1)
\]

\[
= a_n(x^2 + 1)(x - 1)
\]

\[
= a_n(x^3 - x^2 + x - 1)
\]

Now we will use the fact that \(f(2) = 10 \) to find \(a_n \). We know that \(f(x) = a_n(x^3 - x^2 + x - 1) \). So then

\[
f(2) = a_n(2^3 - 2^2 + 2 - 1)
\]

\[
= a_n(8 - 4 + 2 - 1)
\]

\[
= 5a_n
\]

Since we are given that \(f(2) = 10 \), then \(5a_n = 10 \), which means \(a_n = 2 \). Then \(f(x) = 2(x^3 - x^2 + x - 1) \). We must expand the polynomial, so our final answer is

\[
f(x) = 2x^3 - 2x^2 + 2x - 2
\]