Partial Example

Solve the exponential equation. Express the solution as an exact answer in terms of natural logarithms. Then use a calculator to give an approximation of the solution, rounded to two decimal places.

\[e^{2x} - e^x - 6 = 0 \]

ANSWER:

In this partial example we will only do the first few steps.

One way to do this is to treat it as a substitution problem. So first we note that \(e^{2x} = (e^x)^2 \). Then we write the equation as

\[
\begin{align*}
 e^{2x} - e^x - 6 &= 0 \\
 (e^x)^2 - e^x - 6 &= 0
\end{align*}
\]

Now we make the substitution \(u = e^x \). Then \(u^2 = (e^x)^2 \) and we have

\[
\begin{align*}
 e^{2x} - e^x - 6 &= 0 \\
 (e^x)^2 - e^x - 6 &= 0 \\
 u^2 - u - 6 &= 0
\end{align*}
\]

This can be factored:

\[
\begin{align*}
 e^{2x} - e^x - 6 &= 0 \\
 (e^x)^2 - e^x - 6 &= 0 \\
 u^2 - u - 6 &= 0 \\
 (u - 3)(u + 2) &= 0
\end{align*}
\]

This will give us two possible values for \(u \). Solving for \(u \) is not the end of the problem! Once we find \(u \), we need to back-substitute \(u = e^x \) to solve for \(x \), and then we need to throw out any invalid solutions.