Example

Solve the logarithmic equation. Separate multiple answers with a comma if necessary.

\[\log_8 x + \log_8(x - 12) = 2 \]

ANSWER:

We want to solve for \(x \), and since we have \(x \) appearing in two different logs we need to combine them into one log. To do this we will use the property \(\log_b M + \log_b N = \log_b(MN) \).

\[\log_8 x + \log_8(x - 12) = 2 \]
\[\log_8 [x(x - 12)] = 2 \]
\[\log_8(x^2 - 12x) = 2 \]

Next we convert the logarithmic equation to an exponential equation.

\[\log_8 x + \log_8(x - 12) = 2 \]
\[\log_8 [x(x - 12)] = 2 \]
\[\log_8(x^2 - 12x) = 2 \]
\[x^2 - 12x = 8^2 \]
\[x^2 - 12x = 64 \]

This is a quadratic equation in \(x \) which can be factored.

\[x^2 - 12x = 64 \]
\[x^2 - 12x - 64 = 0 \]
\[(x - 16)(x + 4) = 0 \]
\[x = 16 \text{ or } x = -4 \]

So we have two solutions for \(x \). We need to check them to make sure they both work. If we plug \(x = 16 \) into the original equation, then we have:

\[\log_8 x + \log_8(x - 12) = 2 \]
\[\log_8 16 + \log_8(16 - 12) = 2 \]
\[\log_8 16 + \log_8 4 = 2 \]
\[\log_8 (16 \cdot 4) = 2 \]
\[\log_8 64 = 2 \]
Since $\log_8 64 = 2$ is a true statement (because $8^2 = 64$), then $x = 16$ is a valid solution. But if we try $x = -4$, then:

$$\log_8 x + \log_8 (x - 12) = 2$$
$$\log_8 (-4) + \log_8 (-4 - 12) = 2$$

Right away we get $\log_8 (-4)$, which is not allowed since we can only take logs of **positive** numbers.

So the only valid solution is $[x = 16]$.