Example

1. Rewrite the right-hand side of the equation \(y = 600(2.9)^x \) in terms of the base \(e \).

ANSWER: \[y = 600e^{x \ln(2.9)} \]

We need to convert \((2.9)^x\) into \(e \) raised to some power. To do this, we will use the fact that \(e^{\ln M} = M \), for any \(M > 0 \). If we plug \((2.9)^x\) in for \(M \), then we end up with the following:

\[
\begin{align*}
 e^{\ln M} &= M \\
 e^{\ln[(2.9)^x]} &= (2.9)^x
\end{align*}
\]

Now we need to simplify the left-hand side. Let’s just look at what’s in the exponent of the \(e \): It’s \(\ln [(2.9)^x] \). Using properties of exponents, we can pull the \(x \) down and we have

\[
 \ln [(2.9)^x] = x \ln(2.9)
\]

So then going back to the original problem, we have

\[
\begin{align*}
 e^{\ln M} &= M \\
 e^{\ln[(2.9)^x]} &= (2.9)^x \\
 e^{x \ln(2.9)} &= (2.9)^x
\end{align*}
\]

Now we have found a way to write \((2.9)^x\) in terms of the base \(e \). All we need to do is substitute it into the given equation and we are done.

\[
\begin{align*}
 y &= 600 \cdot (2.9)^x \\
 y &= 600 \cdot e^{x \ln(2.9)}
\end{align*}
\]

This gives us our final answer, \(y = 600e^{x \ln(2.9)} \).

Note that the \(y = \) is already provided in WeBWorK. If this were your problem in WeBWorK, then you would type in the box:

\[
600e^{x \ln(2.9)}
\]

Of course, you could say \(\ln(2.9)x \) instead of \(x \ln(2.9) \), but using the form \(x \ln(2.9) \) will decrease the possibility of confusion or of a mistake.
2. Now round the exponent to three decimal places.

ANSWER: \[y = 600e^{1.065x} \]

Now we just use a calculator to evaluate \(\ln(2.9) \) to three decimal places:

\[
\ln(2.9) \approx 1.06471
\]

Since we round to three decimal places, then we have \(\ln(2.9) \approx 1.065 \). Putting this in the answer to the previous part gives us \(y = 600e^{1.065x} \).