Example

Find the exact value of

\[\cos \left[\tan^{-1} \sqrt{3} + \sin^{-1} \left(-\frac{2}{5} \right) \right]. \]

SOLUTION: The expression \(\cos \left[\tan^{-1} \sqrt{3} + \sin^{-1} \left(-\frac{2}{5} \right) \right] \) is equivalent to \(\cos(\alpha + \beta) \), where

\[\alpha = \tan^{-1} \sqrt{3}, \quad \text{and} \quad \beta = \sin^{-1} \left(-\frac{2}{5} \right). \]

From the definition of \(\tan^{-1} \), we know that \(\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \) and, using the additional information that \(\tan(\alpha) = \sqrt{3} > 0 \), we may narrow the region further to place \(\alpha \in \left(0, \frac{\pi}{2} \right) \).

Finally, the standard angle \(\pi/3 \) belongs to \(\left(0, \frac{\pi}{2} \right) \) and satisfies \(\tan(\pi/3) = \sqrt{3} \), so it must be that \(\alpha = \pi/3 \).

From the definition of \(\sin^{-1} \), we know that \(\beta \) is in Q1 or QIV, but the further information that \(\sin(\beta) < 0 \) indicates that \(\beta \) can only be in QIV. So draw a triangle for \(\beta \) in QIV with side opposite to \(\beta \) of length -2, hypotenuse of length 5, and side adjacent to \(\beta \) of (positive) length to be determined. From the Pythagorean theorem, the side adjacent to \(\beta \) is of length \(\sqrt{5^2 - (-2)^2} = \sqrt{21} \). So

\[\cos \beta = \frac{\text{adj}}{\text{hyp}} = \frac{\sqrt{21}}{5} \quad \text{and} \quad \sin \beta = \frac{\text{opp}}{\text{hyp}} = -\frac{2}{5}. \]

Using the sum formula for cosine, we have

\[
\begin{align*}
\cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \\
&= \cos \left(\frac{\pi}{3} \right) \cdot \left(\frac{\sqrt{21}}{5} \right) - \sin \left(\frac{\pi}{3} \right) \cdot \left(-\frac{2}{5} \right) \\
&= \frac{1}{2} \left(\frac{\sqrt{21}}{5} \right) - \sqrt{3} \cdot \left(-\frac{2}{5} \right) \\
&= \frac{\sqrt{21} + 2\sqrt{3}}{10}
\end{align*}
\]

This shows

\[\cos \left[\tan^{-1} \sqrt{3} + \sin^{-1} \left(-\frac{2}{5} \right) \right] = \frac{\sqrt{21} + 2\sqrt{3}}{10}. \]