Example

Find all critical numbers of the function

\[f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}. \]

Solution: Recall that the critical numbers of a function \(f(x) \) are those values of \(x \) in the domain of \(f \) for which \(f'(x) = 0 \) or \(f'(x) \) is undefined. Since

\[f(x) = x^{1/2} + x^{-1/2}, \]

it follows that

\[f'(x) = \frac{1}{2}x^{-1/2} - \frac{1}{2}x^{-3/2} \]

\[= \frac{1}{2x^{1/2}} - \frac{1}{2x^{3/2}}. \]

Finding a common denominator, we have

\[f'(x) = \frac{x - 1}{2x^{3/2}}. \quad (1) \]

To determine the values of \(x \) for which \(f'(x) = 0 \), we can look at the values of \(x \) which make the numerator in (1) zero, i.e.,

\[x - 1 = 0 \quad \text{or} \quad x = 1. \]

To determine the values of \(x \) for which \(f'(x) \) is undefined, it suffices to look at the values of \(x \) which make the denominator in (1) zero, or for which

\[2x^{3/2} = 0, \quad \text{or} \quad x = 0. \]

Note however that even though \(f' \) is undefined at \(x = 0 \), the original function \(f \) is not defined at that point either, so \(x = 0 \) is not a critical number for \(f \).

So the function \(f \) has only one critical number, at

\[x = 1. \]