Example

Let

\[f(x) = \frac{x + 1}{x^2 + 3} \]

Find the intervals where \(f \) is increasing and/or decreasing and the \(x \)-values where \(f \) has local maxima or minima.

Solution: The domain of \(f \) is \((-\infty, \infty)\), since its denominator can never equal zero. To determine the critical numbers of \(f \), we compute

\[
 f'(x) = \frac{(x^2 + 3) - (x + 1)(2x)}{(x^2 + 3)^2} = \frac{x^2 + 3 - 2x^2 - 2x}{(x^2 + 3)^2} = \frac{-(x^2 + 2x - 3)}{(x^2 + 3)^2} = \frac{-(x + 3)(x - 1)}{(x^2 + 3)^2} \tag{1}
\]

and note that \(f'(x) \) is zero when the numerator in (1) is zero, i.e., at

\[x = -3, 1. \]

Because the denominator of \(f' \) is always positive, there are no values of \(x \) for which \(f'(x) \) is undefined. Thus \(f \) has two critical numbers, at \(x = -3 \) and \(x = 1 \).

These critical numbers divide the domain of \(f \) into the open intervals \((-\infty, -3), (-3, 1) \) and \((1, \infty)\).

To determine whether \(f \) is increasing or decreasing on these intervals we make a sign chart with these intervals along the first column, and factors in the numerator and denominator of \(f' \) along the first row:

<table>
<thead>
<tr>
<th>interval</th>
<th>(x + 3)</th>
<th>(x - 1)</th>
<th>((x^2 + 3)^2)</th>
<th>(f'(x) = -(x - 3)(x + 1)/(x^2 + 3)^2)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -3))</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td>decreasing</td>
</tr>
<tr>
<td>((-3, 1))</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
<td>increasing</td>
</tr>
<tr>
<td>((1, \infty))</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>decreasing</td>
</tr>
</tbody>
</table>

Thus \(f \) is increasing on \((-3, 1)\) and it is decreasing on \((-\infty, -3) \cup (1, \infty)\).

The critical numbers \(x = -3 \) and \(x = 1 \) are the candidates local maxima/minima of \(f \):

- Because \(f \) changes from decreasing to increasing at the point \(x = -3 \), it follows that \(f \) has a local minimum at \((-3, f(-3)) = (-3, -1/6)\).

- The function \(f \) changes from increasing to decreasing at the point \(x = 1 \), so \(f \) has a local maximum at \((1, f(1)) = (1, 1/2)\).