Example

Evaluate the definite integral

\[\int_0^{\pi^2/400} \frac{\tan^3(5\sqrt{t}) \sec^2(5\sqrt{t})}{\sqrt{t}} \, dt. \]

Solution: Since \(\sec^2 z \) is the derivative of \(\tan z \), we will make the substitution

\[u = \tan \left(5\sqrt{t}\right), \]

and thus

\[du = \sec^2(5\sqrt{t}) \cdot 5 \cdot \frac{1}{2} t^{-1/2} \, dt = \frac{5}{2} \cdot \frac{\sec^2(5\sqrt{t})}{\sqrt{t}} \, dt, \]

so that

\[\frac{\sec^2(5\sqrt{t})}{\sqrt{t}} \, dt = \frac{2}{5} \, du. \]

The lower and upper limits of integration for \(t \) variable are

lower limit for \(t = 0 \), \quad upper limit for \(t = \frac{\pi^2}{400}. \)

To convert this to a corresponding range of integration for the \(u \)-variable, we note that

\[u(0) = \tan \left(5\sqrt{0}\right) = 0, \quad u\left(\frac{\pi^2}{400}\right) = \tan \left(5\sqrt{\frac{\pi^2}{400}}\right) = \tan \left(\frac{5\pi}{20}\right) = \tan \frac{\pi}{4} = 1, \]

so that the lower and upper limits for the \(u \) variable are

lower limit for \(u = 0 \), \quad upper limit for \(u = 1. \)

Making the substitutions given above,

\[\int_0^{\pi^2/400} \frac{\tan^3(5\sqrt{t}) \sec^2(5\sqrt{t})}{\sqrt{t}} \, dt = \int_0^1 u^3 \cdot \frac{2}{5} \, du \]

\[= \frac{2}{5} \int_0^1 u^3 \, du \]

\[= \frac{2}{5} \left[\frac{u^4}{4} \right]_0^1 \]

\[= \frac{1}{10} (1^4 - 0^4) \]

\[= \frac{1}{10}. \]

which is the final answer. There is no need to return to the original variable of integration (in this case, \(t \)) for a definite integral problem.