Example

A particle moves according to the following law of motion

\[s(t) = t + \frac{4}{t}, \quad t > 0, \]

where \(s \) is measured in meters and \(t \) in seconds.

(a) What is the average velocity of the particle over the time interval \([1, 3]\)?

(b) What is the (instantaneous) velocity of the particle at time \(t = 3 \) sec?

(c) What is the acceleration of the particle at time \(t = 3 \) sec?

(d) When is the particle moving in the positive direction, when is it moving in the negative direction, and when is it at rest?

Solution:

(a) The average velocity over the interval \([1, 3]\) is given by

\[\frac{s(3) - s(1)}{3 - 1} = \frac{(3 + \frac{4}{3}) - (1 + \frac{4}{1})}{2} \text{ m/sec.} \]

(b) The instantaneous velocity is \(s'(t) \), where

\[s'(t) = 1 - \frac{4}{t^2} \text{ m/sec, \ so \ } s'(3) = 1 - \frac{4}{3^2} = \frac{9 - 4}{9} = \frac{5}{9} \text{ m/sec.} \]

(c) Acceleration is given by \(s''(t) \text{ m/sec}^2 \), where

\[s''(t) = (-2) \left(-\frac{4}{t^3} \right) = \frac{8}{t^3} \text{ m/sec}^2, \text{ \ so \ } s''(3) = \frac{8}{3^3} = \frac{8}{27} \text{ m/sec}^2. \]

(d) The particle is moving in the positive direction when \(s'(t) > 0 \), so we will first determine where \(s'(t) = 0 \). Combining the terms in \(s'(t) \),

\[s'(t) = \frac{t^2 - 4}{t^2} = \frac{1}{t^2} (t^2 - 4) = \frac{1}{t^2} (t - 2)(t + 2), \]

and since \(1/t^2 > 0 \) for all \(t > 0 \), we have that

\[s'(t) = 0, \text{ \ when \ } (t - 2)(t + 2) = 0, \text{ \ or \ } t = 2, -2 \text{ sec.} \]

However, \(t = -2 \) is not within the given time interval \(t \in (0, \infty) \), so the only value of \(t \) in this interval for which \(s'(t) = 0 \) is \(t = 2 \), which means that \(s'(t) \neq 0 \) for \(t \in (0, 2) \) and \(t \in (2, \infty) \). To determine where \(s'(t) \) is positive and negative, we can make a sign chart for the factors in \(s'(t) \) when restricted to these two intervals:
The signs ’+’ or ’−’ in the table can determined by checking the value of the given factor at a single point in the interval. The conclusions to be drawn from the table are as follows:

- The particle is moving in the positive direction when the velocity satisfies $s'(t) > 0$, or when $t \in (2, \infty)$.
- It is moving in the negative direction when the velocity satisfies $s'(t) < 0$, or when $t \in (0, 2)$.
- It is at rest when $s'(t) = 0$, or at $t = 2$ sec.