Example

One of the curves below represents the graph of a position function, and the other curve represents the graph of the corresponding velocity function. Which curve is which?

Solution: In other words, one graph is of a function $y = f(t)$, and the other is the graph of $y = f'(t)$.

• Case #1: First consider the possibility that the solid red curve is the graph of $y = f(t)$. If that is the case, then the curve of the corresponding derivative function, $y = f'(t)$, must satisfy the following properties:

 – The graph of $y = f'(t)$ must go through the point $(0, 0)$, since the solid red curve has a horizontal tangent (i.e., slope = 0) at $t = 0$.
 – The graph of $y = f'(t)$ must take on positive values (be above the t-axis) for $t < 0$, since the solid red curve is increasing (has positive slope) for $t < 0$.
 – The graph of $y = f'(t)$ must take on negative values (be below the t-axis) for $t > 0$, since the solid red curve is decreasing (has negative slope) for $t > 0$.

Although the dashed blue curve does go through $(0, 0)$, the rest of the description of $y = f'(t)$ does not match the dashed blue curve. It follows that red curve cannot be the position curve, $y = f(t)$.

• Case #2: To verify that it is the dashed blue curve which is the graph of $y = f(t)$, consider what the curve of $y = f'(t)$ must look like in this case. If we let t_- and t_+ denote the t-values where the dashed blue curve is at its minimum point and its maximum point, respectively, then:

 – The curve of $y = f'(t)$ must cross the t-axis at points $t = t_-$ and $t = t_+$, since the dashed blue curve has horizontal tangents at those points.
 – The curve of $y = f'(t)$ must be above the t-axis on the interval (t_-, t_+) because the dashed blue curve is increasing (i.e., with positive slope) on that interval.
The curve of $y = f'(t)$ must be below the t-axis for $t < t_-$ and for $t > t_+$ because the dashed blue curve is decreasing (i.e., with negative slope) for those values of t.

This description matches the solid red curve. It follows that the dashed blue curve is the graph of a position function ($y = f(t)$) and the solid red curve is the graph of the corresponding velocity function ($y = f'(t)$).