Example

Consider the function

\[f(x) = x + 3x^{2/3}, \quad -1 \leq x \leq 1. \]

(a) Find all \(x \)-values for which this function has an endpoint extreme value (i.e., an endpoint maximum or endpoint minimum).

(b) Determine the absolute maximum and minimum values of \(f \) and the \(x \)-values where these extrema occur.

Solution: To give answers to both (a) and (b), it is helpful to first determine the critical points of \(f \) on the given interval. Since

\[
\begin{align*}
 f'(x) &= 1 + 3 \cdot \frac{2}{3} x^{-1/3} \\
 &= 1 + \frac{2}{x^{1/3}} \\
 &= \frac{x^{1/3} + 2}{x^{1/3}},
\end{align*}
\]

it follows that \(f'(x) = 0 \) at those values of \(x \) for which

\[x^{1/3} + 2 = 0, \quad \text{or} \quad x^{1/3} = -2 \quad \text{or} \quad x = (-2)^3 = -8. \]

In addition, \(f' \) is undefined at those values of \(x \) for which

\[x^{1/3} = 0, \quad \text{or} \quad x = 0. \]

So the critical points are \(x = -8, 0 \), but \(x = -8 \) is not in the given interval \([-1, 1]\) so it will not be considered below.

(a) To determine whether the \(f \) has an endpoint maximum or endpoint minimum at the endpoints \(x = -1 \) or \(x = 1 \), it is useful to make a sign chart for \(f'(x) \) on the subintervals of the domain \([-1, 1]\) which are determined by the critical point \(x = 0 \). These subintervals are

\[[-1, 0), \quad (0, 1]. \]

Using the important factors in \(f'(x) = \frac{x^{1/3} + 2}{x^{1/3}} \) as columns in the chart, we obtain the following:

<table>
<thead>
<tr>
<th>interval</th>
<th>(x^{1/3} + 2)</th>
<th>(x^{1/3})</th>
<th>(f'(x) = \frac{x^{1/3} + 2}{x^{1/3}})</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1, 0))</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>decreasing</td>
</tr>
<tr>
<td>(0, 1])</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>increasing</td>
</tr>
</tbody>
</table>
Because f is decreasing on the interval $[-1, 0)$, it has an endpoint maximum at $x = -1$. Similarly, f is increasing on $(0, 1]$, so f has an endpoint maximum at $x = 1$.

(b) To determine absolute maximum and minimum values of f on $[-1, 1]$, we need to evaluate $f(x)$ at the endpoints $x = -1$ and $x = 1$, and at all critical points in the interval $[-1, 1]$:

\[
\begin{align*}
 f(-1) &= -1 + 3(-1)^{2/3} = -1 + 3(-1)^2 = 2, \\
 f(1) &= 1 + 3 \cdot 1^{2/3} = 1 + 3 = 4, \\
 f(0) &= 0 + 3 \cdot 0^{2/3} = 0,
\end{align*}
\]

so the absolute maximum value of f is 4, which occurs at the endpoint $x = 1$. The absolute minimum value of f is 0 which occurs at the critical point $x = 0$.