Example

Let

\[f(x) = x^4 - x^3 \]

Determine the domain of \(f \) and its critical points. Then use the Second Derivative Test to determine all local (relative) extrema of \(f \). If the Second Derivative Test fails for a given critical point, use the First Derivative Test.

Solution: The domain of \(f \) is \((-\infty, \infty)\), since it is a polynomial. To determine the critical points of \(f \), we compute

\[f'(x) = 4x^3 - 3x^2 = x^2(4x - 3) \]

and letting \(f'(x) = 0 \) we get the critical points of \(f \) which are:

\[x = 0, \frac{3}{4}. \]

To use the Second Derivative Test, we compute

\[f''(x) = 12x^2 - 6x = 6x(2x - 1). \]

Evaluating \(f''(x) \) at the two critical points, we have:

\[f''(0) = 0 \text{ and } f'' \left(\frac{3}{4} \right) = 6 \cdot \frac{3}{4} \left(2 \cdot \frac{3}{4} - 1 \right) = \frac{9}{4} > 0. \]

From the Second Derivative Test, we can conclude that \(\frac{3}{4} \) is a local minimum, but no conclusion can be drawn at \(x = 0 \) because \(f''(0) = 0 \). So we have to use the First Derivative Test at this critical point.

Since the two critical points divide the domain of \(f \) into the open intervals \((-\infty, 0)\), \((0, \frac{3}{4}) \) and \((\frac{3}{4}, \infty) \), and we only need to determine whether \(f \) is increasing or decreasing on the intervals around \(x = 0 \), so we make a sign chart with these two intervals \((-\infty, 0)\), \((0, \frac{3}{4}) \) along the first column, and factors of \(f' \) along the first row:

<table>
<thead>
<tr>
<th>interval</th>
<th>(x^2)</th>
<th>(4x - 3)</th>
<th>(f'(x) = x^2(4x - 3))</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, 0))</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>decreasing</td>
</tr>
<tr>
<td>((0, \frac{3}{4}))</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>decreasing</td>
</tr>
</tbody>
</table>

Thus \(f' < 0 \) on \((-\infty, 0)\) and \((0, \frac{3}{4}) \) so it follows from the continuity of \(f \) that the function is decreasing on the entire interval \((-\infty, \frac{3}{4})\).

Finally, because \(f \) decreases immediately before and after the point \(x = 0 \), it follows that \(f \) has no local/relative extrema at \(x = 0 \).