Example

Let \(f(x) = x - x^{1/3} \). Describe the concavity of the graph of \(f(x) \) and find the points of inflection (if any).

Solution: First we have
\[
f'(x) = 1 - \frac{1}{3x^{2/3}}.
\]
and
\[
f''(x) = \frac{2}{9x^{5/3}}.
\]
Note that \(f''(x) \) does not exist at \(x = 0 \), and \(f'' \) keeps a constant sign on \((-\infty, 0) \) and on \((0, \infty) \). The sign of \(f'' \) on these intervals and the consequences for the graph of \(f \) are as follows:

<table>
<thead>
<tr>
<th>sign of (f''):</th>
<th>$-$ $-$ $-$ $-$ $-$ $-$ $-$ undefined $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph of (f):</td>
<td>concave down 0 concave up</td>
</tr>
</tbody>
</table>

so it follows that

- \(f \) is concave up for \(x \in (0, \infty) \),
- \(f \) is concave down for \(x \in (-\infty, 0) \).

Since \(f \) is continuous at 0,

- \(f \) has a point of inflection at \(x = 0 \).