Example

Let

\[f(x) = |x - 2|. \]

Find the largest region where \(f \) is increasing and/or decreasing.

Solution: First remove the absolute value sign, which splits the function into parts:

\[
f(x) = \begin{cases}
 x - 2, & x > 2 \\
 0, & x = 2 \\
 -x + 2, & x < 2
\end{cases}
\]

For \(x > 2 \): The derivative of \(x - 2 \) is 1. So \(f' > 0 \) and thus \(f \) is increasing on \((2, \infty)\).

For \(x < 2 \): The derivative of \(-x + 2\) is -1. So \(f' < 0 \) and thus \(f \) is decreasing on \((-\infty, 2)\).

Since \(f \) is defined and continuous at \(x = 2 \), the endpoint should be included in both intervals. So we can conclude that \(f \) is increasing on \([2, \infty)\) and decreasing on \((-\infty, 2]\).