Example

A particular curve is represented parametrically by

\[x = 2 \cos(8t) \quad y = -5 \sin(8t) \quad t \in [0, \frac{\pi}{8}]. \]

1. Find the corresponding Cartesian equation for this curve. (Write the equation of the full curve, even if only part of the curve is given by the parametrization.)

2. As \(t \) increases on \([0, \frac{\pi}{8}]\), in which direction is \((x(t), y(t))\) moving?

3. Give the largest and smallest values of \(y \) taken by this curve.

1. **Find the Cartesian equation for the curve.**

 From the parametric equations, it follows that
 \[\frac{x}{2} = \cos(8t) \quad \text{and} \quad \frac{y}{-5} = \sin(8t), \]
 thus using the Pythagorean identity \(\cos^2(8t) + \sin^2(8t) = 1 \), the Cartesian equation for the whole curve is given by
 \[\left(\frac{x}{2} \right)^2 + \left(\frac{y}{-5} \right)^2 = 1. \]
 The equation may be written equivalently as
 \[\frac{x^2}{4} + \frac{y^2}{25} = 1, \]
 whose graph is an ellipse with \(-2 \leq x \leq 2\) and \(-5 \leq y \leq 5\).

2. **Determine the direction.**

 To determine the portion of the curve given by the parametric equations for \(t \in [0, \frac{\pi}{8}] \), we note the following.

 * \(t = 0 \) corresponds to the point on the curve \((2 \cos(0), -5 \sin(0)) = (2, 0)\).
 * As \(t \) increases from 0 to \(\frac{\pi}{16} \), the value of \(\cos(8t) \) decreases from 1 to 0, while the value of \(\sin(8t) \) increases from 0 to 1 (so \(y \) becomes more negative).
 \(t = \frac{\pi}{16} \) corresponds to the point on the curve \((2 \cos(\pi/2), -5 \sin(\pi/2)) = (0, -5)\).
 * As \(t \) continues to increase from \(t = \frac{\pi}{16} \) to \(t = \frac{\pi}{8} \) the value of \(\cos(8t) \) decreases from 0 to -1, while the value of \(\sin(8t) \) decreases from 1 to 0.
 \(t = \frac{\pi}{8} \) corresponds to the point on the curve \((2 \cos(\pi), -5 \sin(\pi)) = (-2, 0)\).
We conclude that the parametric equations trace out the curve \textbf{clockwise} as \(t \) increases. The equations above are a parameterization for the \textbf{lower half of the ellipse}.

3. \textbf{Find the largest and smallest values of } \(y \).
 For \(t \) in the interval \([0, \frac{\pi}{8}]\), \(\sin(8t) \) attains all values between 0 and 1. It follows that for \(y = -5 \sin(8t) \),
 \[-5 \leq y \leq 0.\]