Example

Consider the following sequence:

\[\frac{-2}{1}, \frac{4}{2}, \frac{-8}{3}, \frac{16}{4}, \ldots \]

Write a formula for the nth term \(a_n \) in this sequence.

Solution: The general terms of a sequence are expressed as

\[a_1, a_2, a_3, a_4, \ldots, \]

so it must be in this case that

\[a_1 = \frac{-2}{1} = -2^{1}, \quad a_2 = \frac{4}{2} = 2^{2}, \]
\[a_3 = \frac{-8}{3} = -2^{3}, \quad a_4 = \frac{16}{4} = 2^{4}, \]

and so on. Thus the nth term may be written \(a_n = \pm \frac{2^n}{n} \), where it remains to determine the precise sign of \(a_n \) as a function of \(n \).

The usual way to represent an alternating sign in a sequence is via the use of

\[(-1)^n = \begin{cases} -1, & n \text{ odd,} \\ 1, & n \text{ even,} \end{cases} \]

or

\[(-1)^{n+1} = \begin{cases} 1, & n \text{ odd,} \\ -1, & n \text{ even,} \end{cases} \]

(equivalently \((-1)^{n-1}\) may be used in place of the latter). In this particular example, the sequence is negative for odd values of \(n \) and positive for even values of \(n \), so we can write the nth term as

\[a_n = (-1)^n \frac{2^n}{n}. \]