Example

Consider the region of the x-y plane bounded by the parabola $y = 2x^2$ and the lines $y = 0$, and $x = \sqrt{2}$. What is the volume of the solid obtained by rotating this region about the x-axis? See figure below (not drawn to scale!).

(a) **Find the area of a slice.**
Since the region borders the axis of rotation, each slice will be a disk with vertical radius (perpendicular to the axis of rotation x-axis.) For fixed x, the radius will be just the function value, or $r(x) = 2x^2$. The area of a slice is given by
\[A(x) = \pi r^2(x) = \pi (2x^2)^2 = 4\pi x^4. \]

(b) **Find the limits of integration.**
The disk runs from $x = 0$ to $x = \sqrt{2}$ as can be seen from the above graph.

(c) **Find the volume of the region.**
The volume V is given by
\[V = \int_0^{\sqrt{2}} 4\pi x^4 \, dx = 4\pi \left(\frac{x^5}{5} \right) \bigg|_0^{\sqrt{2}} = \frac{16\sqrt{2}\pi}{5}. \]