Example

Compute

\[\lim_{x \to \infty} \frac{2 \cos x + x}{e^x}. \]

Which function grows faster, \(2 \cos x + x\) or \(e^x\)?

1. **Compute the limit.**

 Taking the limit as \(x\) approached infinity, we arrive at the indeterminate form \(\frac{\infty}{\infty}\).

 Applying l’Hopital’s rule, we have

 \[\lim_{x \to \infty} \frac{2 \cos x + x}{e^x} = \lim_{x \to \infty} \frac{-2 \sin x + 1}{e^x}. \]

 Recall now that \(\sin x\) has range \([-1, 1]\), so the numerator is always bounded above by 3 and below by \(-1\), thus

 \[\frac{-1}{e^x} \leq \frac{-2 \sin x + 1}{e^x} \leq \frac{3}{e^x}. \]

 Since

 \[\lim_{x \to \infty} \frac{-1}{e^x} = 0 = \lim_{x \to \infty} \frac{3}{e^x}, \]

 we can apply Sandwich theorem to conclude that

 \[\lim_{x \to \infty} \frac{2 \cos x + x}{e^x} = 0. \]

2. **Determine which function grows faster.** We have

 \[\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0 \]

 where \(f(x) = \cos x + x\) and \(g(x) = e^x\), so \(f\) grows slower than \(g\) (i.e. \(g\) grows faster than \(f\)).