1. (to accompany problem #1) Suppose a solid lies between the planes perpendicular to the \(x \)-axis at \(x = -2 \) and \(x = 3 \). The cross sections perpendicular to the \(x \)-axis and these planes run from \(y = -\sqrt{x + 2} \) to \(y = \sqrt{x + 2} \). Find the volume of the solid if the cross sections are squares with diagonals in the \(xy \)-plane.

(a) Find the area of a cross section.
Since the cross sections are squares whose diagonal \(d \) runs from \(y = -\sqrt{x + 2} \) to \(y = \sqrt{x + 2} \), it follows that

\[
 d = \sqrt{x + 2} - (-\sqrt{x + 2}) = 2\sqrt{x + 2}.
\]

Recalling the relationship between the side \(s \) of a square and its diagonal \(d \), we can use either pythagorean theorem \(s^2 + s^2 = d^2 \), so that \(2s^2 = d^2 \), or one can use right triangle trigonometry to see that \(\cos(45^\circ) = \frac{s}{d} \), i.e. \(\frac{\sqrt{2}}{2} d = s \). Thus the area of a cross section is given by

\[
 A(x) = s^2 = (\sqrt{2}\sqrt{x + 2})^2 = 2(x + 2)
\]

(b) Find the volume of the region.
Since the cross sections are stacked along the \(x \)-axis from \(x = -2 \) to \(x = 3 \), the volume \(V \) is just the integral of the area \(A(x) \) from \(x = -2 \) to \(x = 3 \), i.e.

\[
 V = \int_{-2}^{3} 2(x + 2)\,dx = (x^2 + 4x)\Big|_{-2}^{3} = 21 - (-4) = 25.
\]
2. (to accompany problems #4-8) Find the volume of the solid generated by rotating the region bounded by $y = x^2$, $y = 1$, and $x = 4$ about the line $y = 1$. See figure below (not drawn to scale!)

(a) Find the area of a slice.
 Since the region borders the axis of rotation, each slice will be a disk with vertical radius (perpendicular to the axis of rotation $y = 1$.) For fixed x, the radius will be the top curve minus the bottom, or $r(x) = x^2 - 1$. The area of a slice is given by

 $$A(x) = \pi r(x)^2 = \pi (x^2 - 1)^2.$$

(b) Find the limits of integration.
 The disks run from the x-coordinate of the intersection of $y = x^2$ with $y = 1$ in the first quadrant, so from $x = 1$, to $x = 4$.

(c) Find the volume of the region.
 The volume V is given by

 $$V = \int_1^4 \pi (x^2 - 1)^2 \, dx = \pi \left[\frac{x^5}{5} - \frac{2x^3}{3} + x \right]^4_1 = \frac{828\pi}{5}$$