Example

Find the area inside one leaf of the lemniscate

\[r^2 = 2 \sin \theta. \]

We consider two approaches to the problem.

1. **Without using symmetry.**

 The curve \(r^2 = 2 \sin \theta \) is traced out entirely as \(\theta \) ranges from 0 to \(\pi \).

 ![Graph of \(r^2 = 2 \sin \theta \) for \(0 \leq \theta \leq \pi \).](image)

 Notice that the upper leaf of the lemniscate \(r^2 = 2 \sin \theta \) is traced out by the function \(r = \sqrt{2 \sin \theta} \) as \(\theta \) ranges from 0 to \(\pi \). Similarly, the lower leaf is traced out by the function \(r = -\sqrt{2 \sin \theta} \) as \(\theta \) ranges from 0 to \(\pi \).

 For polar curves, the area of the region enclosed by \(r = f(\theta) \) for \(\alpha \leq \theta \leq \beta \) is given by

 \[
 \text{Area} = \frac{1}{2} \int_{\alpha}^{\beta} (f(\theta))^2 \, d\theta.
 \]

 Therefore the area enclosed by the one leaf of the lemniscate \(r^2 = 2 \sin \theta \) is

 \[
 \text{Area} = \frac{1}{2} \int_{0}^{\pi} (\sqrt{2 \sin \theta})^2 \, d\theta \quad (= \frac{1}{2} \int_{0}^{\pi} (-\sqrt{2 \sin \theta})^2 \, d\theta)
 \]

 \[
 = \int_{0}^{\pi} \sin \theta \, d\theta
 \]

 \[
 = -\cos(\theta) \bigg|_{0}^{\pi}
 \]

 \[
 = 2.
 \]
2. Using symmetry.
Note that if \((r, \theta)\) lies on the graph of \(r^2 = 2\sin \theta\), then \((r, \pi - \theta)\) lies on the graph since
\[2\sin(\pi - \theta) = 2\sin \theta = r^2,\] so the curve is symmetric about the y-axis. (It can also be shown that the graph is symmetric about the x-axis and the origin).

Notice that the right half of the upper leaf of the lemniscate \(r^2 = 2\sin \theta\) is traced out by the function \(r = \sqrt{2\sin \theta}\) as \(\theta\) ranges from 0 to \(\pi/2\).

![Graph of \(r = \sqrt{2\sin \theta}\) for \(0 \leq \theta \leq \pi/2\).](image)

Using symmetry about y-axis, the area of the leaf is twice the area enclosed by this curve, namely

\[
\text{Area} = 2 \int_0^{\pi/2} \frac{1}{2} \left(\sqrt{2\sin \theta}\right)^2 d\theta \\
= 2 \int_0^{\pi/2} \sin \theta \, d\theta \\
= -2 \cos \theta \bigg|_0^{\pi/2} \\
= 2.
\]