Example

Use the Basic Comparison Test to determine if the series converges or diverges.

\[\sum_{k=1}^{\infty} \frac{\ln k}{(k^3 + 1)} \]

To use the Basic Comparison test to show convergence, we need to find a convergent series \[\sum_{k=1}^{\infty} b_k \text{ for which } \frac{\ln k}{(k^3 + 1)} \leq b_k \text{ for all } k \text{ sufficiently large.} \]

To use the Basic Comparison test to show divergence, we need to find a divergent series \[\sum_{k=1}^{\infty} c_k \text{ for which } \frac{\ln k}{(k^3 + 1)} \geq c_k \text{ for all } k \text{ sufficiently large.} \]

Notice that the numerator grows more slowly than \(k \) and the denominator grows with \(k^3 \), so we suspect that the terms of the series will “behave like” \(\frac{k}{k^3} \) (or \(\frac{1}{k^2} \)) and that the series is likely convergent.

To find an upper bound \(b_k \), we bound the numerator above and the denominator below as follows:

For all \(k \geq 1 \),

\[\ln k < k \]

and

\[k^3 + 1 > k^3 \]

from which it follows that

\[\frac{1}{k^3 + 1} < \frac{1}{k^3}. \]

Thus

\[\frac{\ln k}{k^3 + 1} < \frac{k}{k^3} = \frac{1}{k^2}. \]

The series \(\sum_{k=1}^{\infty} \frac{1}{k^2} \) is a convergent \(p \)-series, therefore by the Basic Comparison Test, both series converge.