1. Find the unit vectors tangent to \(f(x) = 3x - 4 \) at the point \((2, 2)\).

Solution: Because the function is already a line, the tangent line at any point is simply the function itself. To find a vector parallel, find two points in tangent line. Choose \(x = 1 \) and \(x = 2 \) to get the points \(A = (1, -1) \) and \(B = (2, 2) \). The vector from \(A \) to \(B \) is \(\langle 1, 3 \rangle \), and the vector from \(B \) to \(A \) is \(\langle -1, -3 \rangle \). Dividing these vectors by their magnitudes gives the unit vectors \(\left\langle \frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right\rangle \), and \(\left\langle -\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}} \right\rangle \). Note that if the function is not linear, one must first find the tangent line in order to find the unit tangent vectors.