1. Consider a line that passes through the point \(P = (0, -1, 0) \) and is parallel to the vector \(\mathbf{v} = (2, 1, 3) \). Also consider the plane \(2x + y + 2z = 3 \).

(a) Find a parameterization of the line.

\[\text{Solution:} \] Use the point as the position vector, \(\mathbf{r}_0 = \overrightarrow{OP} = (0, -1, 0) \), where \(O \) is the origin. The vector from \(P \) to any other point on the line is parallel to \(\mathbf{v} \), and is therefore a scalar multiple of \(\mathbf{v} \), written as \((2t, t, 3t) \). Thus the equation for the line is \(\mathbf{r}_0 + t \mathbf{v} = (2t, t - 1, 3t) \).

(b) Find the point where the line intersects the plane.

\[\text{Solution:} \] Plug the \(x, y, \) and \(z \) components of the line into the plane. The result is \(2(2t) + (t - 1) + 2(3t) = 3 \). Solving for \(t \) yields \(t = \frac{4}{11} \). Plugging this into the line equation gives the intersection point \(\left(\frac{8}{11}, -\frac{7}{11}, \frac{12}{11} \right) \).