1. Let \(r(t) = < t, t^2, t \cos(t) > \). Find the derivative of \(r(t) \) at \(t = \pi \). What does this value give us?

Solution: Because \(r(t) \) has been parameterized (that is, \(r(t) = < f(t), g(t), h(t) > \)), \(r'(t) \) is found by finding \(f'(t), g'(t) \) and \(h'(t) \). In this case, \(f'(t) = 1 \), \(g'(t) = 2t \), and \(h'(t) = \cos(t) - t \sin(t) \). Therefore we get that:

\[
r'(t) = < 1, 2t, \cos(t) - t \sin(t) >
\]

Plugging in \(\pi \) for \(t \) gives us the vector \(< 1, 2\pi, -1 > \).

This is the tangent vector (but not necessarily the unit tangent vector) of \(r'(t) \) at \(t = \pi \).