1. At what point on the surface \(x = \frac{y^4}{4} + 3z^2 \) is its tangent plane parallel to the plane \(-2x + 2y + 12z = 3\).

Solution: The direction of the normal line to the tangent plane of a surface is given by the gradient. Planes are parallel when their normal lines are parallel. Therefore, we must set the gradient of the surface equal to a scalar multiple of the normal line to the given plane and solve for \(x, y, \) and \(z \). Moving \(x \) to the other side of the equation, we get \(-x + \frac{y^4}{4} + 3z^2 = 0\), which is of the form \(F(x, y, z) = k \). Then we find \(\nabla(F) = \langle -1, y^3, 6z \rangle \). The normal vector to the plane \(-2x + 2y + 12z = 3\) is simply \(\langle -2, 2, 12 \rangle \). Therefore, we set:

\[
\langle -1, y^3, 6z \rangle = a \langle -2, 2, 12 \rangle \tag{1}
\]

Equating the first components, we find that \(a = \frac{1}{2} \). Then we have \(y^3 = 1 \), so \(y = 1 \). We also have \(6z = 6 \), so \(z = 1 \). Therefore, the tangent plane of the surface is parallel to the given plane when \(y = 1 \) and \(z = 1 \). Plugging into the equation of the surface we see that \(x = \frac{1^4}{4} + 3 \times 1^2 = \frac{13}{4} \). Our final solution is the point \(\left(\frac{13}{4}, 1, 1 \right) \).