1. Change the order of integration of the double integral \(\int_0^1 \int_{\frac{y^{1/3}}{y}} x^2 \, dx \, dy \).

Solution: We note that the area, if we were to sketch it, would be the region in the first quadrant bounded on the left by the line \(x = y \) and on the right by the curve \(x = y^{1/3} \). We note that \(x = y^{1/3} \) is equivalent to \(y = x^3 \). To summarize how integration is being perceived currently, we are looking, in terms of left and right, at what functions in terms of \(y \) that our \(x \) values fall between and then looking at what constants \(y \) falls between. To reverse the order of integration, we do the opposite: we look, in terms of up and down, at what functions in terms of \(x \) that \(y \) falls between and then what constants \(x \) falls between. Thus we come up with the new limits of integration that \(0 \leq x \leq 1 \) and \(x^3 \leq y \leq x \). And so we can rewrite the integral as \(\int_0^1 \int_{x^3}^x x^2 \, dy \, dx \) which can then be evaluated.