1. Express the integral \(\iiint_E f(x, y, z) \, dV \), where \(E \) is the solid bounded by \(y = 2x^2 + 2z^2 \) and the plane \(y = 8 \);

Solution: The region \(D \) in the \(xz \)-plane can be found by standing in front of this solid and we can see that \(D \) will be a disk in the \(xz \)-plane. This disk will come from the front of the solid and we can determine the equation of the disk by setting the elliptic paraboloid and the plane equal.

\[
2x^2 + 2z^2 = 8 \rightarrow x^2 + z^2 = 4
\]

This region, as well as the integrand, both seems to suggest that we should use something like polar coordinates. However we are in the \(xz \)-plane and weve only seen polar coordinates in the \(xy \)-plane. This is not a problem. We can always translate them over to the \(xz \)-plane with the following definition.

\[
x = r\cos\theta \\
z = r\sin\theta
\]

Since the region doesnt have \(y \)s we will let \(z \) take the place of \(y \) in all the formulas. Note that these definitions also lead to the formula,

\[
x^2 + z^2 = r^2
\]

With this in hand we can arrive at the limits of the variables that well need for this integral

\[
2x^2 + 2z^2 \leq y \leq 8 \\
0 \leq r \leq 2 \\
0 \leq \theta \leq 2\pi
\]